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Ky Regularised Classification

> beginning with scattered data in high dimensions
: .\ N . .
D={(d.y)= (.- iy} Hel0) ye(-1.1)
/:

> re-construct underlying function f(x) such that

> sign(f(x)) = y/
» f provides a reasonable prediction when evaluated at other x

> we get with
» suitable loss/cost function L to minimise misclassification count
» Tikhonov-regularisation (to have well-posed problem)
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Ky Loss Functions

> negative Iog likelihood

5 Z LY. g(¥) Z log (1+exp (~yg(x!)) )

> huberised hlnge loss (his a parameter to be chosen)
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Ky A Sum of Separable Functions

> we employ a sum of separable functions

r d
fx)=> [T

I=1 j=1

v

costs rdM if each (one-dimensional) f/ costs M
good approximation with small r defeats curse of dimensionality
represent f/ € V; by its coefficients ¢! for basis {¢x} ¥,

v Vv

M
fi =2 ci(k)x
k=1

> very closely related to low rank decomposition for tensors
> therefore in two dimensions very closely related to SVD
> Regression in [Beylkin.Garcke.Mohlenkamp:2009] v
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L What is one-D f/?

> we represent f/ € V; by its coefficients ¢!

M

fi =2 ci(k)ex

k=1

> use hat functions (piecewise linear), shown level 3, i.e. M = 23 + 1
e —
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Ky Example Data Set

4 ~— ~

r = 4, multi-scale basis with level 5, M = 25 + 1
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% Learning Theory Context

> framework of Sobolev spaces for learning theory
> bounds on its properties for learning e.g. in [Cucker.Smale:2001]
> discrete approximation takes place (by sums of separable functions)

> approximation theory bounds for convergence rates in statistical
learning theory context in [Barron.Cohen.Dahmen.Devore:2008]
> other approaches can be formulated as sum of separable functions

» with increasing rank r and resolution M one can approximate a function
from a Sobolev space of certain smoothness arbitrarily close
» convergence order for related approaches grows exponentially in d

> currently no characterisation of functions with low separation rank
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> primary goal: investigate performance of function representation

> non-quadratic loss function need non-linear solution process
> essentially two strategies in this setting
» minimise in whole parameter space (empirically does not work)
» alternatingly minimise a subset of the unknowns at each step
> need non-linear minimisation for both, e.g.
» BFGS Quasi-Newton
» non-linear CG
» trust-region Newton

> can hit local minima in any case
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Ky Alternating Minimisation

> loop over the dimensions i =1,...,d
» fix the components in all directions but i

r

eg.i=1: xf)_Zf1 x/H Zf{ x))p)

» improve f by modifying the components in one direction i
> L; in one dimension

N r
1 .
N > log (1 + exp <—yjz s,p}f{(xﬁ)))

j=1 =1

» O(rMN) to compute loss function (& gradient)
> two variants for regularisation
» VdD: use | Vf(x)|]? to regularise
> inner iteration with complexity O((rMN + r?M?)S + d?r?M?)
» Vf!: regularise each f](x) with || V(f](x))|?
> inner iteration with complexity O((rMN + r2M?)S) ¥
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Ky Total Cost

> in addition to the inner solver we have an outer iteration
» main cost is update of

d
pj/:Hfll(le)7 j:17"'7N’ /:1,...,f
i=2

» one update can be done in O(rMN)
» therefore cost for one iteration is O(drMN)

> with K the number of outer iterations we get complexity

» O(Kd[(r?M? + rMN)S + d?r?M?]) for VdD regularisation
» O(Kd[(rMN + r2M?)S]) for V! regularisation

> again complexity linear in N
> linear in d for V! regularisation
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Ranks for Spiral Data Set Example

Ed el W% Ed

r = 4, multi-scale basis level M, =5
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Empirical Comparison of Different Variants

dataset | L, Reg.Vf Ly Reg.Vf | L, Reg.VdD Ly Reg.VdD
CIRCLE 2.00 2.10 1.95 2.30
SPIRALS 0.90 1.10 0.20 0.75
TWONORM 3.40 3.85 5.50 5.90
THREENORM | 18.95 19.10 14.40 15.40
RINGNORM 4.80 4.90 4.70 5.30
CANCER 2.94 2.92 2.92 2.94
LIVER 25.71 25.71 30.56 30.56
CREDIT 22.77 24.25 26.87 26.73
IONOSPHERE | 8.57 8.57 8.57 8.57
DIABETIS 22.08 23.23 22.72 23.38

> repeat procedure from benchmark study, 100 runs for each data set

> L; (here) outperforms Ly
> “dirty” regularisation V! better for real data sets
> VdD better for synthetic data
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% Tests on Classification Datasets (17 Algorithms)

data set | L, Reg.Vf Ly Reg.Vf | L, Reg.VdD Ly Reg.VdD
CIRCLE 1 1 1 1
SPIRALS 3 3 2 3
TWONORM 5 5 10 11
THREENORM 8 9 2 2
RINGNORM 2 2 2 2
CANCER 4 3 3 4
LIVER 1 1 6 6
CREDIT 1 10 13 12
IONOSPHERE 4 4 4 4
DIABETIS 1 5 5 6

> position in comparison to benchmark study with 17 algorithms

> for eight of the data sets in the top three

> for six data sets at least one version achieved better results than svm
> not more than 7 ranks used, mostly less
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% Conclusion

> competetive results for classification with sums of sep. functions
> often surprisingly low ranks to describe classifier
> computational cost can be as low as O(Kd[(rMN + r2M?)8])

> there are variations and possible extensions e.g.

» non-negative functions for better interpretability in case of L;

» multi-class loss functions for hinge loss or penalized likelihood estimation
using vector-valued functions

» different one-dimensional spaces for different attributes and ranks

> more sophisticated minimisation strategies needed
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